Chapter 13: Distributed Objects

This chapter presents a case study of an airline reservation system using distributed object technology in a
three-tier client-server environment. The discussion surrounding the case study focuses on customer
requirements and constraints, distributed object technology, three-tier client—server environments, service
objects, service object replication, partitioning, load balancing, and failover. A distributed object three—tier
client—server development tool called Forté is referenced throughout this chapter.

Case Study 13-1: An Airline Reservation System (OnTime
Airline)

Customer Requirements and Constraints

The requirement in this case study is to create a program to handle flight reservations and accept customer:
complaints. This system will also provide each customer service representative with an inbox for receiving
internal memos from another application. A note window (Figure 13-1) will be developed to handle special
customer needs (e.g., wheel chair access, a child traveling alone). A complaint window will allow customers
to register informal and formal complaints, the distinction being that a formal complaint must be in writing.
The system must be able to handle up to 100 customer service representatives making airline reservations
customers who phone in requests. A legacy system is not currently in place, but a flight schedule and fare
information database exists.

Contact Management Window Flow

Search

Addreas
Window

2 3 Flight

- - .
Information
o Cunsomee |

.
How follows serow sl retusns

Flow follows arrow sl
does NOT retirn

Figure 13-1: Window flow diagram
Distributed Object Technology

Distributed objects have the same properties as nondistributed objects, such as inheritance, abstraction,
encapsulation, and polymorphism (overloading and overriding). However, distributed object technology
allows objects to be distributed over many computers within a single environment. Objects in either a
distributed or nondistributed application have a single location. A distributed application can provide access
many computers and external connections through a single integrated system. To interact with a particular
object in a distributed environment, the application must interact with the computer on which the object is
located; normally the object is located on the machine on which it was created. For example, if developer A
builds the complaint component and developer B builds the customer contact component, then the code tha
developer B constructs must interact with developer As computer to access the complaint component.

144

Two— and Three—-Tier Client—-Server Environments

Two—- and Three-Tier Client—Server Environments

An application environment is a combination of hardware and software located at development and
deployment sites. A two-tier client—server environment consists of the client (tier one) and server (tier two).
A simple client-server application runs on two computersa desktop computer (client) and a database (serve
as shown in Figure 13-2. For example, Forté can access multiple databases, residing on the same server a
using a single database resource manager. One method to accomplish this task is by creating a file on the
server, consisting of environment variables, and then accessing these environment variables as needed. Ot
examples consist of third—generation language applications and an application program interface (API). The
phrase three-tier client-server environment refers to a client (tier one), a business layer (tier two), and a
server (tier three) (Figure 13-3). Figure 13-4 illustrates the business class logic for this case study.

Iwo Tier Client-Server Environment

Application Database
{ther 1) (ther 2)

Client 1
.
Server ‘
»

Client 2 &

Figure 13-2: Client—server application

Three Tier Client-Server Environment

Windew interface Banioess logic Server
(ther 1) (tler 2) (ther 1)

’ Clirsst }
Business

cassA b
f

’ Cliewt 2 r ¥ Decabase
.

Business

\| -
o caab
Cliews 3 !

Figure 13-3: Various phases

Costomer Contact

Nomsher of infans
dase

.
Inbox l 11 v e
Namber of paswengees
Resurning dace
Retwming time
Seasch wethod
Theket clan
Traved from
Travel 10

Search

1

‘ (nmpl.\lnl

Figure 13-4: Class interaction diagram
Service Objects

A service object is a global object that can be accessed from any method within a program in the same mar
as other objects. It is the means whereby an application communicates with external systems, such as
databases or other applications. For example, a single database service object can be used to invoke multif
database sessions asynchronously.

Service objects can be replicated and distributed on multiple computers in the environment. For example, th
customer contact window is displayed on up to 100 computers, and each computer can search the flight

reservation database. Each computer must be able to register complaints on the complaint database locate
the same server computer. The two objects used to interact with each database can reside on two different

145

Service Object Replication

computers, thus reducing network traffic.

Shared objects have an automatic locking mechanism to prevent conflicts when multiple tasks attempt to
access or change an objects state. The object is locked until the transaction is complete. Thus if two custornr
contact representatives are viewing the availability of seats on a flight, then the one who clicks the complete
button first will hold the lock until he or she completes the commit sequence.

Service Object Replication

Replication is the process of copying an object to use it for failover and load balancing asynchronously. Onc
the object is replicated it can be partitioned onto other computers, either client systems or servers in the
environment. The objects of interest to be replicated are service objects, such as the connection to an exter
corporate messaging application, and shared business services, such as the flight reservation database. Se
partitions can also be replicated and applied for failover and load balancing synchronously.

Partitioning

A partition consists of one or more service objects. It decouples a distributed application from the details of i
deployment in a runtime environment. In the partitioning process for this case study, the airline reservation
application is configured for a specific target deployment environment. The application is divided into
separate logical sections calledical partitions. These patrtitions are then assigned to the computers in the
specified deployment environment. Each partition is an independent process that can run on a computer. Fc
example, an application has a client partition on the desktop that provides the graphic user interface.

Other partitions include the DBMS server, on which flight reservation and customer databases reside, that
runs on a server machine. The 3GL-message system service is also partitioned onto a different computer.
Forté automatically coordinates all communication between the partitions. As new hardware architectures ol
additional machines are added to the environment, Forté can repartition an application to take advantage of
the new capabilities without requiring an application rewrite. When a Forté runtime system starts up a
partition, it creates several system objects that coexist with all of the application objects within the partition.
These runtime system objects support the running of each partition on its respective platform and the
functioning of distributed objects as a single application. If a service object creates other objects, then they
will all be located in the same patrtition. For example, if a service object is used to obtain flight information
from a flight reservation database, then the object that was created to hold this information will be on the sal
partition as the service object that created it.

Load Balancing

A service object, such as the flight reservation database manager object, can be replicated any number of
times for load balancing. Load balancing is the use of multiple copies of a service object, located on differen
computers, for simultaneous use by a multiple number of clients. A service object must be replicated to
provide load balancing. That replicate can then be installed onto either the computer on which it was createc
or a different computer in the environment. Placement of the flight reservation database service object onto
several computers reduces bottlenecks. Forté automatically provides a router partition that coordinates the
requests for a service to the next available object, parallel processing, and coordinates of connections to all
copies of a service object. For load balancing, parallel processing can be provided by distributing the demar
for a service among several replicates of the partition that provides the service.

146

Failover

Failover

A service object can also be replicated any number of times for failover, which is a means to provide a back
service object to be used if the primary object fails. Failover provides built-in—fault tolerance for an
application. The process for location of replicates of a service object onto different computers is the same fo
failover and load balancing. However, Forté will only maintain a connection to the primary service object. If
that fails, then the secondary replicate will be accessed until the secondary service object will not be used. |
the case of combined failover and load balancing, the router partition is replicated so that one is the primary
router and the replicate is the secondary router. If the primary router partition fails, then the secondary route
partition automatically becomes active.

Use Cases

Use cases are provided by the customer. The following is a sample use case for generation of a flight
confirmation number.

Use Case General Information

« Title. Handle customer telephone call

» Functional area. Contact management

* Author. Bob Jones

* Business contact. Joe Smith

» Update date. 3/11/98

» Business context. A customer calls an OnTime Airline customer service representative to book a
ticket for a flight

 Actors. Customer service representative and supervisor

» Overview. The actor enters all relevant information needed to book a flight

Use Case Analysis Information

 Preconditions. The actor wishes to reserve a seat for a customer using the customers desired flight
destination, date, and time.

 Basic course. The actor provides the customers flight destination, date, and time to the system and
then searches the system to confirm that the flight date and time exist. If the flight exists, then the
system will return all available seat numbers. Based on the customers preferences, the actor reserve
the desired seat number. The system issues an associated confirmation number.

* Postconditions. The actor has reserved a seat number for the customer.

« Alternate course. When the actor cross—references the flight destination, date, and time and finds no
flights, then the system returns a message asking the actor to re—enter the flight information.

» Businessrules. If the actor makes three unsuccessful attempts to reserve a seat on a flight, then he o
she suggests alternative routes consisting of connecting flights.

Use Case Design Information

Use Case Design Information

Field: Field Name: Type:
Requirements First name String

147

Failover

Middle String

Last name String
Address String

City String

State String

Zip TextData
Home phone TextData
Returning date DateTimeData
Travel from String

Travel to String

Search criteria Integer

Office phone TextData
Total number of passengers Integer
Number of infants Integer
Departing date DateTimeData
Travel class Integer

« Interface elements. From the customer contact window (Figure 13-5), the actor can navigate to any
of the other windows. The customer contact window offers customer information and a flight
confirmation number (Figure 13-6).

Cuntorrar eonnass

rim- |
0 — m —

L W rea |

Date 5.Trre ¥romaron
Sweeten|-——- | 3]
g U [~ — == | |

ol Gf Pavime Gu Micrtton
i of P [
‘u:

N 1 —
Laww e] e ot

rDexdranien indevater

i

toite |

Sewd OTete
Tl Tane
T Sanreh ' bart pian £ Comnh
T Seaa i noeteygabwdcs T Do N
7 Sewihowydma e " Fou) Ohare

Bl e e B e ey | Toreie |

Figure 13-5: Customer contact window

148

Discussion

Tie lovmulvwn, (4

rOuRcer e ko

Mesen v o s [Lt [Pk

Ateme [T50Ter 00w |

e Mereeen G [ST D

Murtes of Paosscger Infomaton rOsde & Tere irfoemanen~
on'v-vo- i Dt v [5em 1 0 o ¥
H =

i PN ey o
ate Br 2 o e

O3 Irfomeaon
LTS oy

LT RPN e —

ot Oters

Timwl Came
© Searh iz bevtpeze # ooy
8 Senhlel okt citwien 1 Nuwme
S Pt Denn

i

(aen |
e
Mion | v | Voret s | it Carend | St Carmen Ao 1 | amaa| |

Figure 13-6: Flight information

 Preconditions. The actor intends to search the flight reservation systems database.

» Basic course. The customer contact window is displayed on the screen and has a file menu bar at the
top and a toolbar at the bottom of the screen. The file menu has the following items:
Save. Saves the data on the current active screen

Print. Prints the data on the current active screen; the windows default printer is used to print a bitme
image of the window

Close. Closes the current active screen

The toolbar provides short cuts to other windows or menu items. When the customer contact window is bein
displayed, there are validations for the following fields:

Departing date and time. This date should be the same as today or later than today.
Arriving date and time. This date should be later than or same as departing date.
Destination information. Both cities and states must exist in the database.
* Postconditions. The actor returns a confirmation number to the customer.
* Alternate course. The actor searches for flight information with the given information. The database

returns more than one possible match. The actor redefines the search criteria and then selects a flig|
that is suitable to the customer.

Discussion

The flight reservation system application is platform independent; the same program can run on any suppor
client system. Thus this distributed application can be deployed in either a single environment or multiple
environments; however, the effort in deploying in multiple environments consists of system administrative
overhead (Forté Software, Inc., 1800 Harrison Street, Oakland, CA, 94612).

149

Discussion

For more information concerning Forté and their associated product line, please refer to the Forté Internet s
at www.Forte.com.

Born Information Services Group, 445 East Lake Street, Suite 120, Wayzata, MN, 55391.

150

